Trio of detectors homes in on black hole sources of gravitational waves

first_img By Adrian ChoSep. 27, 2017 , 12:30 PM N. Baldocchi/The Virgo Collaboration Virgo-European Gravitational Observatory Trio of detectors homes in on black hole sources of gravitational waves Working in concert with the two LIGO detectors, the Virgo detector (above) can pinpoint the sources of gravitational waves on the sky. Sign up for our daily newsletter Get more great content like this delivered right to you! Country For a fourth time, physicists have spotted gravitational waves—ripples in space itself—set off by the merger of two massive black holes. But this time, they detected the waves not only with two detectors in the United States, but also with a third detector in Europe: the Virgo detector near Pisa, Italy. The three-way detection enabled researchers to home in on the location of the black holes on the sky with 10 times greater precision than before, and to probe the polarization of gravitational waves in new ways. The result also independently confirms the blockbuster discovery of gravitational waves made 2 years ago.”Virgo is in the game and that’s very important,” says Clifford Will, a gravitational theorist at the University of Florida in Gainesville who was not involved in the work.Gravitational waves are a spectacular prediction of Albert Einstein’s theory of gravity, general relativity. Einstein explained that gravity arises because massive objects warp space and time. When these objects spin around each other like twirling barbells, he predicted, they should produce ripples in spacetime, or gravitational waves, that spread at light-speed. Click to view the privacy policy. Required fields are indicated by an asterisk (*) It didn’t take Virgo long to strike scientific gold. On 14 August at 12:30:43 p.m. in Italy, the detector’s automated triggering system sensed a potentially exciting tremor, as did the systems of the two LIGO detectors. “This is really a great surprise, having an event just 2 weeks after the start of the run,” says Benoit Mours, a Virgo team member and a physicist from the Annecy Laboratory of Particle Physics in France. Subsequent analysis showed that the signal came from a black hole merger, Virgo researchers announced at a press briefing today in Turin, Italy.The observation should reassure the roughly 280 Virgo scientists, who just a few months ago were dealing with technical difficulties with their machine. “For the experimenters it’s tremendous because you have to see the light at the end of the tunnel,” says Ettore Majorana, a physicist and Virgo team member with INFN in Rome, who worked on the specific technical problems. During the observing run, which ended 25 August, Virgo ran with between a quarter to a half the sensitivity of LIGO, Mours says.The new black hole merger is similar to the first one seen by LIGO. In it, black holes 25 and 31 times as massive as the sun spiraled together in a galaxy 1.8 billion light-years away. By timing the arrivals of the signals at all three detectors, which differ by milliseconds, researchers were able to determine that the black hole merger took place somewhere within a 60-square-degree patch of sky in the Southern Hemisphere. That’s a big chunk of sky—the full moon covers only 0.2 square degrees—but it’s an area 10 times smaller than what could have been determined with the LIGO detectors alone.Such pointing capability could prove crucial for finding flashes of light that accompany the pulses of gravitational waves. Although no such flash is expected from the merger of black holes, it would be expected in the merger of two neutron stars. Rumors have been swirling that such a case has occurred after astronomers last month trained several different telescopes on a particular galaxy.The new observation also tests a key property of the gravitational waves themselves, their polarization. Just as light waves can be polarized horizontally or vertically depending on which way the electromagnetic field in them jiggles, gravitational waves can be polarized in two ways, according to general relativity, Will says. In one way, an oncoming gravitational wave can squeeze space vertically and stretch it horizontally, and then vice versa, in a repeating cycle. The second way is for that pattern to be tilted by 45°.However, if Einstein was wrong and general relativity is incorrect, then, in principle, gravitational waves could come with four other polarization patterns, Will says. “If you see any of the other four it kills general relativity,” he says. With the data from the three detectors, physicists found no evidence for polarization in three of the four unacceptable ways, Will says. So general relativity lives to fight another day.Perhaps most important, the latest result shows that the infant field of gravitational waves continues to live up to scientists’ sky-high expectation, Will says. “Nature has just blown us away.” Email Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe The Virgo and LIGO detectors found that the new black-hole merger occurred in a patch of sky measuring 60 square degrees. That prediction came to fruition in September 2015. Physicists working with the Laser Interferometer Gravitational-Wave Observatory (LIGO), which has twin instruments in Livingston, Louisiana, and Hanford, Washington, spotted a burst of gravitational waves from black holes 29 and 36 times as massive as the sun that spiraled into each other 1.3 billion light-years away. Since then, the 1000-member LIGO team has spotted two other black hole mergers, using its exquisitely sensitive L-shaped optical instruments called interferometers, which use lasers and mirrors to compare the stretching of space in one direction to that in the perpendicular direction. LIGO completed its two interferometers, with 4-kilometer-long arms, in 1999.But LIGO hasn’t been alone in the hunt for gravitational waves. In 2003, European physicists completed construction of Virgo, a €300 million interferometer with 3-kilometer-long arms, funded by French national research agency CNRS and the Italian National Institute of Nuclear Physics (INFN). In 2007, LIGO and Virgo researchers signed a data-sharing agreement, and on 1 August, after a 5-year, €24 million upgrade, Virgo rejoined LIGO in the search for gravitational waves.last_img

Tagged: Tags

Leave a Reply

Your email address will not be published. Required fields are marked *